Reflux și tehnici de încălzire

G.Patton

Expert
Joined
Jul 5, 2021
Messages
3,094
Solutions
3
Reaction score
3,559
Points
113
Deals
1

Introducere.

Aproximativ 80% din reacțiile din laboratorul de chimie organică implică o etapă numită reflux. Se utilizează un solvent de reacție pentru a menține materialele dizolvate și la o temperatură constantă prin fierberea solventului, condensarea acestuia și returnarea sa în balon. Metoda refluxului este, de asemenea, utilizată pe scară largă în sinteza medicamentelor, cum ar fi amfetamina și metamfetamina și alte feniletilamine, LSD, unele canabinoide sintetice, izomerizarea CBD, MDMA și multe alte cazuri. Această tehnică destul de simplă, dar nu trebuie să subestimați pericolul său și să luați toate măsurile de precauție.

Prezentare generală a refluxului.

O instalație de reflux (fig. 1) permite lichidului să fiarbă și să se condenseze, iar lichidul condensat se întoarce în balonul inițial. O instalație de reflux este analogă distilării, principala diferență fiind amplasarea verticală a condensatorului. Lichidul rămâne la punctul de fierbere al solventului (sau soluției) în timpul refluxului activ.
2Hb9svUe7R
Un aparat de reflux permite încălzirea ușoară a unei soluții, dar fără pierderea de solvent care ar rezulta din încălzirea într-un vas deschis. Într-o instalație de reflux, vaporii de solvent sunt captați de condensator, iar concentrația reactanților rămâne constantă pe tot parcursul procesului. Scopul principal al refluxării unei soluții este de a încălzi o soluție într-un mod controlat la o temperatură constantă. De exemplu, imaginați-vă că doriți să încălziți o soluție la 60 ℃ timp de o oră pentru a realiza o reacție chimică. Ar fi dificil să se mențină o baie de apă caldă la 60 ℃ fără un echipament special și ar fi necesară o monitorizare periodică. Cu toate acestea, dacă solventul ar fi metanolul, soluția ar putea fi încălzită la reflux și și-ar menține temperatura fără întreținere periodică la punctul de fierbere al metanolului (65 ℃). Adevărat, 65 ℃ nu este 60 ℃ și dacă temperatura specifică ar fi crucială pentru reacție, atunci ar fi necesar un echipament de încălzire specializat. Dar, adesea, punctul de fierbere al solventului este ales ca temperatură de reacție datorită caracterului său practic.

Proceduri pas cu pas.

1. Se toarnă soluția care urmează să fie refluzionată într-un balon cu fundul rotund și se fixează pe suportul inelar sau pe grilaj cu o clemă extensibilă și o garnitură mică de cauciuc (Fig.2 a și video). Balonul nu trebuie să fie mai mult de jumătate plin. Nu există garnituri de cauciuc în figuri din motive necunoscute. Dacă utilizați fierbere la temperaturi ridicate (>150℃) sau încălzire cu flacără, acestea nu pot fi utilizate.

2. Adăugați o bară de agitare sau câteva pietre de fierbere pentru prevenirea ciocnirilor. Pietrele de fierbere nu trebuie utilizate la refluxul soluțiilor concentrate de acid sulfuric sau fosforic, deoarece acestea vor colora soluția. De exemplu, atunci când se utilizează o bară de agitare pentru prevenirea ciocnirilor cu acid sulfuric concentrat, soluția rămâne incoloră (Fig.2 b). Atunci când aceeași reacție este realizată folosind o piatră de fiert, soluția se întunecă în timpul încălzirii (Fig.2 c) și în cele din urmă transformă întreaga soluție într-o culoare maro purpuriu intens (Fig.2 d).
Rs70mTzANi
a) Turnarea soluției, b) Reacția folosind o bară agitatoare (soluția este incoloră), c+d) Aceeași reacție folosind pietre de fierbere

3. Așezați furtunurile de cauciuc pe un condensator (umeziți mai întâi capetele pentru a le permite să alunece), apoi atașați condensatorul vertical la balonul cu fund rotund. Dacă utilizați un condensator înalt, prindeți condensatorul de suportul inelar sau de grilaj (Fig.3 a). Asigurați-vă că condensatorul se potrivește perfect în balon. Notă de siguranță: dacă piesele nu sunt conectate corect și se scurg vapori inflamabili, aceștia pot fi aprinși de sursa de căldură. Nu conectați balonul cu fund rotund și condensatorul cu o clemă de plastic, așa cum se arată în Fig.3 с. Clipurile din plastic pot ceda uneori (în special atunci când sunt încălzite), iar această configurație nu permite îndepărtarea fiabilă a balonului de la sursa de căldură la sfârșitul refluxului.
Notă: Cu cât punctul de fierbere al solventului (amestecului de solvenți) este mai ridicat, cu atât aveți nevoie de un condensator de reflux mai scurt. Dimpotrivă, dacă solventul dumneavoastră fierbe la temperaturi scăzute (eter), utilizați condensatorul de reflux Liebig cel mai lung.

4. Conectați furtunul de pe brațul inferior al condensatorului la robinetul de apă și lăsați furtunul de pe brațul superior să se scurgă la chiuvetă (Fig.3 b). Este important ca apa să intre pe partea de jos a condensatorului și să iasă pe partea de sus (astfel încât apa să curgă împotriva gravitației), altfel condensatorul va fi ineficient deoarece nu se va umple complet.
SjeiwoNR36
LwNdIC7fo8
5. Dacă mai multe soluții vor fi refluxate în același timp (de exemplu, dacă mai mulți studenți efectuează un reflux unul lângă altul), furtunurile de la fiecare instalație de reflux pot fi conectate în serie (Fig. 4). Pentru a realiza acest lucru, brațul superior al "instalației A", care în mod normal se scurge în chiuvetă, este conectat în schimb la brațul inferior al "instalației B." Brațul superior al instalației B se scurge apoi în chiuvetă. Conectarea aparatelor în serie minimizează utilizarea apei, deoarece apa care iese dintr-un condensator intră în următorul. Mai multe instalații de reflux pot fi conectate în serie, iar debitul de apă trebuie monitorizat pentru a se asigura că toate instalațiile sunt răcite corespunzător.
Z8LvdtpHiN
6. Începeți să faceți să circule un flux constant de apă prin furtunuri (nu atât de puternic încât furtunul să plesnească din cauza presiunii ridicate a apei). Verificați din nou dacă piesele de sticlărie se potrivesc bine între ele, apoi poziționați sursa de căldură sub balon. Porniți placa de agitare dacă utilizați o bară de agitare.
a) Dacă utilizați un mantau de încălzire, mențineți-l în poziție cu o platformă reglabilă (de exemplu, o plasă de sârmă / o clemă inelară). Lăsați câțiva centimetri sub manta astfel încât, atunci când reacția este completă, mantaua să poată fi coborâtă și balonul răcit. Dacă mantaua de încălzire nu se potrivește perfect cu dimensiunea balonului cu fund rotund, înconjurați balonul cu nisip pentru a crea un contact mai bun (figura 5 a).

b) Dacă utilizați o baie de nisip, îngropați balonul în nisip astfel încât nisipul să fie cel puțin la fel de înalt ca nivelul lichidului din balon (Fig.5 b).

c) Dacă instalația va fi lăsată în cele din urmă nesupravegheată pentru o perioadă lungă de timp (de exemplu, peste noapte), strângeți sârmă de cupru peste racordurile furtunului la condensator pentru a preveni ca schimbările presiunii apei să le facă să se desprindă.

3WoOMVfUCN
a) Umplerea unei mantale de încălzire cu nisip pentru a asigura o potrivire perfectă, b) Încălzirea unui aparat de reflux cu o baie de nisip.

7. Dacă sursa de căldură a fost preîncălzită (opțional), soluția ar trebui să înceapă să fiarbă în cinci minute. Dacă nu o face, creșteți rata de încălzire. Viteza de încălzire adecvată apare atunci când soluția fierbe viguros și se observă un "inel de reflux" la aproximativ o treime din condensator. Un "inel de reflux" este limita superioară a locului în care vaporii fierbinți se condensează activ. În cazul anumitor soluții (de exemplu, soluții apoase), inelul de reflux este evident, cu picături ușor vizibile în condensator (fig. 6 a+b). În cazul altor soluții (de exemplu, mulți solvenți organici), inelul de reflux este mai subtil, dar poate fi observat cu atenție (Fig.6 c). O mișcare subtilă poate fi observată în condensator atunci când lichidul se scurge pe părțile laterale ale condensatorului, sau obiectele din fundal pot apărea distorsionate din cauza refracției luminii prin lichidul de condensare (în Fig.6 d, polul suportului inelului este distorsionat).
IHjKsYrfFp
A+b) Condensul observat în condensator la refluxul apei, c) Inelul de reflux al etanolului observat subtil în treimea inferioară a condensatorului, d) Distorsiunea suportului inelului din condensator din cauza soluției de etanol care refluxează

8. În cazul în care urmați o procedură în care trebuie să refluxați pentru o anumită perioadă de timp (de exemplu, "refluxați timp de o oră"), perioada de timp trebuie să înceapă atunci când soluția nu doar fierbe, ci refluxează activ în treimea inferioară a condensatorului.

9. Căldura trebuie redusă dacă inelul de reflux urcă până la jumătatea condensatorului sau mai sus, altfel vaporii ar putea ieși din balon.

10. După ce refluxul este complet, opriți sursa de căldură și scoateți balonul de la căldură fie ridicând aparatul de reflux în sus, fie lăsând sursa de căldură în jos (Fig.7 a).
NPZ9ihwp6O
a) Ridicarea balonului pentru răcire, b) Răcirea rapidă în baia de apă de la robinet

Nu opriți apa care curge prin condensator până când soluția nu este caldă decât la atingere. După câteva minute de răcire cu aer, balonul cu fund rotund poate fi scufundat într-o baie de apă de la robinet pentru a accelera procesul de răcire (Fig.7 b).

Reflux uscat.

Dacă trebuie să păstrați vaporii de apă atmosferică în afara reacției, trebuie să utilizați un tub de uscare și adaptorul de admisie în instalația de reflux (Fig. 8). Puteți utiliza aceste dispozitive dacă trebuie să țineți vaporii de apă departe de orice sistem, nu doar de instalația de reflux.
Mu7OcA9bHt
1. Dacă este necesar, curățați și uscați tubul de uscare. Nu trebuie să faceți o curățare temeinică decât dacă suspectați că agentul de uscare anhidru nu mai este anhidru. Dacă substanța este aglomerată în interiorul tubului, probabil că este moartă. Trebuie să curățați și să reîncărcați tubul la începutul procedurii. Asigurați-vă că utilizați clorură sau sulfat de calciu anhidru. Ar trebui să rămână în regulă în câteva utilizări. Dacă sunteți norocos, indicând Drierite, un sulfat de calciu anhidru special preparat, ar putea fi amestecat cu Drierite alb. Dacă culoarea este albastră, agentul de uscare este bun; dacă este roșu, agentul de uscare nu mai este uscat și ar trebui să scăpați de el (a se vedea Desicanți în "Desicatoare în vid").

2. Puneți un dop liber de vată de sticlă sau bumbac pentru a împiedica agentul de uscare să cadă în balonul de reacție.

3. Asamblați aparatul așa cum se arată, cu tubul de uscare și adaptorul deasupra condensatorului.

4. În acest moment, reactivii pot fi adăugați în balon și încălziți împreună cu aparatul. De obicei, aparatul este încălzit în timp ce este gol pentru a alunga apa de pe pereții aparatului.

5. Se încălzește aparatul, de obicei gol, pe o baie de aburi, efectuând din când în când un sfert de rotație pentru a încălzi uniform întreaga instalație. Se poate utiliza un arzător dacă nu există pericol de incendiu și dacă încălzirea se face cu atenție. Îmbinările grele din sticlă măcinată se vor fisura dacă sunt încălzite prea mult.

6. Lăsați aparatul să se răcească la temperatura camerei. Pe măsură ce se răcește, aerul este aspirat prin tubul de uscare înainte de a ajunge în aparat. Umiditatea din aer este prinsă de agentul de uscare.

7. Adăugați rapid reactivii sau solvenții uscați în balonul de reacție și remontați sistemul.

8. Efectuați reacția ca de obicei, ca un reflux standard.

Adăugare și reflux.

Din când în când trebuie să adăugați un compus la un montaj în timp ce reacția are loc, de obicei împreună cu un reflux. Ei bine, pentru a adăuga noi reactivi, nu spargeți sistemul, nu lăsați să iasă vapori toxici și nu vă îmbolnăviți. Folosiți o pâlnie de adiție. Acum, am vorbit despre pâlnii de adăugare cu pâlnii separatoare (sticlărie de laborator) atunci când am luat în considerare tija, și este posibil ca acest lucru să fi fost confuz.

Utilizarea pâlniei.
Uitați-vă la Fig.9 a. Este o pâlnie sep. adevărată. Puneți lichide aici și le agitați și le extrageți. Dar ați putea folosi această pâlnie pentru a adăuga material la o instalație? Nu. Nu are o îmbinare de sticlă șlefuită la capăt; și numai îmbinările de sticlă se potrivesc cu îmbinările de sticlă. Fig.9 c prezintă o pâlnie de adăugare cu egalizare a presiunii. Vă amintiți când ați fost avertizați să scoateți dopul unei pâlnii separatoare, pentru a nu crea un vid în interiorul pâlniei pe măsură ce o goliți? Oricum, arma laterală egalizează presiunea de pe ambele părți ale lichidului pe care îl adăugați în balon, astfel încât acesta să curgă liber, fără formarea vidului și fără a fi nevoie să scoateți dopul. Acest echipament este foarte frumos, foarte scump, foarte limitat și foarte rar. Iar dacă încercați o extracție într-unul dintre acestea, tot lichidul va curge din tub pe podea pe măsură ce scuturați pâlnia. Așadar, s-a ajuns la un compromis (Fig.9 b). Deoarece probabil veți face mai multe extracții decât adiții, cu sau fără reflux, tubul de egalizare a presiunii a fost eliminat, dar îmbinarea din sticlă măcinată a rămas. Extracții; nicio problemă. Natura tijei este neimportantă. Dar în timpul adițiilor, va trebui să vă asumați responsabilitatea de a vă asigura că nu se produce acumularea neplăcută de vid. Puteți scoate dopul din când în când sau puteți pune un tub de uscare și un adaptor de admisie în locul dopului. Acesta din urmă menține umiditatea afară și previne acumularea de vid în interiorul pâlniei.

Cum se instalează
Există cel puțin două moduri de a configura o adiție și un reflux, folosind fie un balon cu trei gâturi, fie un adaptor Claisen. M-am gândit să arăt aceste două setări cu tuburi de uscare. Acestea împiedică umezeala din aer să pătrundă în reacție. Dacă nu aveți nevoie de ele, faceți fără ele.
W96jaHUiAO
Pâlnii separatoare în triplu exemplar, a) simplă, b) pâlnie de adiție separatoare de compromis, c) pâlnie de adiție egalizatoare de presiune
8RACNgHJFf
Zs73tMVwY0

Pietre de fierbere (așchii de fierbere).

Pietrele de fierbere (sau cipurile de fierbere) sunt bucăți mici de rocă poroasă neagră (adesea carbură de siliciu) care sunt adăugate la un solvent sau la o soluție. Acestea conțin aer prins care iese prin bule atunci când lichidul este încălzit și au o suprafață mare care poate acționa ca loc de nucleare pentru formarea bulelor de solvent. Acestea trebuie adăugate la un lichid rece, nu la unul care se apropie de punctul de fierbere, pentru a nu provoca o erupție puternică de bule. Atunci când un lichid este adus la punctul de fierbere cu ajutorul pietrelor de fierbere, bulele tind să provină în principal din pietre (Fig.11 b). Pietrele de fierbere nu pot fi refolosite, deoarece după o utilizare, crăpăturile lor se umplu cu solvent și nu mai pot crea bule.
BFC2sUSAxH
a) Pietre de fierbere în apă, b) Fierbere viguroasă, c) Pietre de fierbere utilizate în cristalizare

Pietrele de fierbere nu trebuie utilizate la încălzirea soluțiilor concentrate de acid sulfuric sau fosforic, deoarece acestea pot degrada și contamina soluția. De exemplu, Fig.12 prezintă o reacție de esterificare Fischer care utilizează acid sulfuric concentrat. Atunci când se utilizează o bară de agitare pentru prevenirea ciocnirilor, soluția rămâne incoloră (Fig.12 a). Atunci când aceeași reacție este efectuată cu ajutorul unei pietre de fierbere, soluția se întunecă în timpul încălzirii (Fig.12 b) și în cele din urmă transformă întreaga soluție într-o culoare maro purpuriu intens (Fig.12 c). Pe lângă contaminarea soluției, culoarea închisă face dificilă manipularea materialului cu o pâlnie separatoare: în Fig.12 d sunt prezente două straturi, deși este foarte greu de văzut.
MA1KYFCVt8
a) Reacția de esterificare Fischer folosind o bară de agitare (soluția este incoloră), b) Aceeași reacție folosind pietre de fierbere, c) Aceeași reacție după câteva minute de încălzire, d) Două straturi întunecate în pâlnia de separare ca urmare a înnegririi soluției

Metode de încălzire și inflamabilitate.

  • În anumite contexte, alegerea sursei de căldură de utilizat este esențială, în timp ce în alte contexte mai multe ar putea funcționa la fel de bine. Alegerea sursei de căldură de utilizat depinde de mai mulți factori.
  • Disponibilitate (instituția dumneavoastră deține echipamentul?)
  • Rata de încălzire (doriți să încălziți treptat sau rapid?)
  • Flexibilitatea încălzirii (trebuie să se agite căldura în jurul unui aparat?)
  • Temperatura finală necesară (lichidele cu punct de fierbere scăzut necesită o abordare diferită față de lichidele cu punct de fierbere ridicat)
  • Inflamabilitatea conținutului
L6Po1pZty5
Deoarece siguranța este un factor important în alegerea laboratorului, este important să luați în considerare inflamabilitatea lichidului care urmează să fie încălzit. Aproape toate lichidele organice sunt considerate "inflamabile", ceea ce înseamnă că sunt capabile să ia foc și să susțină combustia (o excepție importantă este că solvenții halogenați tind să fie neinflamabili). Cu toate acestea, acest lucru nu înseamnă că toate lichidele organice se vor aprinde imediat dacă sunt plasate în apropierea unei surse de căldură. Multe lichide au nevoie de o sursă de aprindere (o scânteie, un chibrit sau o flacără) pentru ca vaporii lor să ia foc, o proprietate adesea descrisă de punctul de aprindere al lichidului. Punctul de aprindere este temperatura la care vaporii pot fi aprinși cu o sursă de aprindere. De exemplu, punctul de aprindere al etanolului de 70% este de 16,6 ℃, ceea ce înseamnă că poate lua foc la temperatura camerei folosind un chibrit. Un arzător Bunsen este o sursă excelentă de aprindere (și poate atinge temperaturi de aproximativ 1 500 ℃), ceea ce face ca arzătoarele să reprezinte un risc serios de incendiu în cazul lichidelor organice și o sursă de căldură care ar trebui evitată adesea.

O altă proprietate importantă în discutarea inflamabilității este temperatura de autoaprindere a unui lichid: temperatura la care substanța se aprinde spontan sub presiune normală și fără prezența unei surse de aprindere. Această proprietate este deosebit de utilă deoarece nu necesită o flacără (care este frecvent evitată în laboratorul de chimie organică), ci doar o suprafață fierbinte. O suprafață de plită încinsă la "mare" poate atinge temperaturi de până la 350 ℃. Notă de siguranță: deoarece eterul dietilic, pentanul, hexanul și eterul de petrol cu punct de fierbere scăzut au temperaturi de autoaprindere sub această valoare (fig. 14), ar fi periculos să se fiarbă acești solvenți pe o plită, deoarece vaporii s-ar putea scurge din recipient și s-ar putea aprinde la contactul cu suprafața plită. În general, trebuie să se acorde atenție atunci când se utilizează o plită pentru încălzirea oricărui lichid volatil și inflamabil într-un recipient deschis, deoarece este posibil ca vaporii să depășească învelișul ceramic al plăcii și să intre în contact cu elementul de încălzire de dedesubt, care poate fi mai fierbinte de 350oC. Din acest motiv, plitele fierbinți nu sunt alegerea optimă atunci când se încălzesc vase deschise cu lichide organice volatile, deși în unele cazuri pot fi utilizate cu prudență atunci când sunt setate pe "scăzut" și utilizate într-o hotă bine ventilată.
N6Crl2k5Pu
Deoarece combustia este o reacție în faza de vapori, lichidele cu punct de fierbere scăzut (< 40 ℃) tind să aibă puncte de aprindere și temperaturi de autoaprindere scăzute deoarece au presiuni de vapori semnificative (Fig.12). Toate lichidele cu punct de fierbere scăzut trebuie tratate cu mai multă prudență decât lichidele cu punct de fierbere moderat (> 60 ℃).
 
Last edited by a moderator:

Hans-Dietrich

Don't buy from me
New Member
Joined
Dec 4, 2021
Messages
47
Reaction score
48
Points
18

Fără răcire, frigiderul se va încălzi până la temperatura elementului de încălzire, iar masa de reacție pur și simplu va zbura sau va pierde solventul și se va topi. Este necesar ca toți vaporii care se formează în balon să se condenseze și să se întoarcă înapoi.
 
Last edited:

Hans-Dietrich

Don't buy from me
New Member
Joined
Dec 4, 2021
Messages
47
Reaction score
48
Points
18

Da, dar ... Dacă încălziți etanolul până la 70C, atunci nu se va întâmpla nimic. Dacă până la 80, atunci mai devreme sau mai târziu banca ar trebui să explodeze.

Acesta este un mod greșit de a face sinteza substanțelor.

Nu este foarte clar ce doriți să întrebați. Puteți să vă clarificați întrebarea pe exemplul unei proceduri specifice (sinteză) ????
 

Hans-Dietrich

Don't buy from me
New Member
Joined
Dec 4, 2021
Messages
47
Reaction score
48
Points
18

Un experiment speculativ ??? Serios ? ) Vă recomand să-l faceți practic. ))) Închideți alcoolul într-un borcan și puneți-l pe o suprafață cu o temperatură de 70 de grade. Cel puțin pentru o zi )

Nu e vorba de ceea ce iubesc chimiștii. Chimia este un pic mai complicată decât spui tu. Reacțiile au loc undeva în faza gazoasă, undeva în cea lichidă și undeva în cea topită. Numai cunoscând o anumită reacție se poate spune de ce condiții are nevoie.
 

Hans-Dietrich

Don't buy from me
New Member
Joined
Dec 4, 2021
Messages
47
Reaction score
48
Points
18
În astfel de condiții, nu se va ajunge la nimic. Este posibil ca vaporii să pătrundă prin îmbinările din recipient. Atunci borcanul este gol )
 

G.Patton

Expert
Joined
Jul 5, 2021
Messages
3,094
Solutions
3
Reaction score
3,559
Points
113
Deals
1
Presiunea vaporilor saturați asupra soluției nu îi va permite acesteia să fiarbă.
 

Hans-Dietrich

Don't buy from me
New Member
Joined
Dec 4, 2021
Messages
47
Reaction score
48
Points
18

Nu sunt în măsură să răspund. Când am studiat acest lucru nu exista încă Wikipedia.
 

MuricanSpirit

Don't buy from me
New Member
Joined
Nov 6, 2021
Messages
73
Reaction score
51
Points
18
Așa că vă rog să mă corectați dacă îmi imaginez greșit, dar încă mă chinui să înțeleg tot rahatul ăsta (chiar dacă este simplu pentru voi, băieți), mi-l imaginez așa:

Există o legătură (cum ar fi "magnetică" sau "gravitațională") între molecule care le ține împreună, dacă nu există alte forțe și la 0° Kelvin ar trebui să fie la "starea sa naturală", distanța dintre molecule este fixă în lungime. Dacă adăugăm căldură, moleculele vor începe să ricoșeze, iar dacă ricoșează prea tare (de exemplu, prin adăugarea de mai multă căldură), în cele din urmă se vor "lovi" reciproc. Așadar, căldura echivalează cu mișcarea.

Deci ar trebui să putem determina starea sa (lichid, solid sau gaz), nu? Dacă moleculele nu își pot schimba poziția, atunci este solid, dacă își pot schimba poziția, dar nu părăsesc "legătura generală"/"întreaga structură" datorită legăturii dintre molecule, atunci este lichid. Dacă se pot îndepărta reciproc, atunci este un gaz.
 
Last edited:

G.Patton

Expert
Joined
Jul 5, 2021
Messages
3,094
Solutions
3
Reaction score
3,559
Points
113
Deals
1
Pentru că nu puteți lua în considerare toate interacțiunile în substanță. Ele sunt foarte multe. Socotelile matematice, de regulă, nu se potrivesc de obicei cu măsurătorile practice din chimie.
 

GFGHFGDF

Don't buy from me
New Member
Joined
May 5, 2022
Messages
4
Reaction score
1
Points
3
Adăugați o bară de agitare

Ce este bara de agitare?
 

ASheSChem

Don't buy from me
Resident
Language
🇫🇷
Joined
Apr 10, 2022
Messages
303
Reaction score
176
Points
43

Agitatorul magnetic sau mixerul magnetic este un dispozitiv de laborator care utilizează un câmp magnetic rotativ pentru a determina o bară de agitare (sau un purice) scufundată într-un lichid să se rotească foarte repede, agitându-l astfel. Câmpul rotativ poate fi creat fie de un magnet rotativ, fie de un set de electromagneți staționari, plasați sub recipientul cu lichid. Se utilizează în chimie și biologie atunci când alte forme de agitare, cum ar fi agitatoarele motorizate și tijele de agitare, nu pot fi utilizate.

 

GFGHFGDF

Don't buy from me
New Member
Joined
May 5, 2022
Messages
4
Reaction score
1
Points
3
Vă mulțumim. :giggle:
 

1thejew1

Don't buy from me
New Member
Joined
Oct 29, 2022
Messages
12
Reaction score
1
Points
3
Există și alte forțe decât magnetismul și gravitația, prietene, caută forța puternică și forța slabă
 

1thejew1

Don't buy from me
New Member
Joined
Oct 29, 2022
Messages
12
Reaction score
1
Points
3
Văd atât de multe lucruri greșite, în primul rând gaze inflamabile, sigilate și căldură, tocmai ați creat rețeta perfectă pentru o bombă.

Am văzut sticlă explodând de cel puțin câteva ori când a fost încălzită. Nu contează adăugarea de lichide inflamabile și căldură creând gaze inflamabile.

De asemenea, nu văd cum vă potriviți un termometru adecvat pentru a măsura cu exactitate temp de așa ceva. Așa că distrați-vă menținând temperatura la exact 70 timp de 24 de ore

înainte de a recomanda altora să facă un astfel de experiment stupid, poate ar trebui să încercați mai întâi și să vă țineți fața foarte aproape de borcan, astfel încât să puteți vedea dacă fierbe sau nu.

Un aparat de reflux ar trebui să fie făcut din sticlă rezistentă la căldură, iar îmbinările creează puncte slabe în sticlă, astfel încât, dacă se creează o presiune prea mare, aici se va desface.
Dar, în principal, coloana permite gazelor să urce, apoi să se răcească, lăsând loc expansiunii gazelor.
 

prvnc

Don't buy from me
New Member
Language
🇬🇧
Joined
Jun 18, 2025
Messages
41
Reaction score
20
Points
8
Reflux is essential in organic synthesis for controlled heating without solvent loss. It's widely used in both academic and illicit labs. Always clamp glassware securely, use proper cooling, and avoid open flames with flammable solvents. Choose heating methods based on solvent properties - mantles and sand baths are safer for volatile organics. Boiling stones help prevent bumping but aren’t suitable for strong acids. When adding reagents during reflux, use addition funnels to avoid exposure. Always prioritize safety, especially with flammable or pressurized systems.
 

Chemtrail

Don't buy from me
Resident
Language
🇺🇸
Joined
May 10, 2025
Messages
413
Reaction score
95
Points
28
Hi 👋

From Vogels Practical Organic Chemistry

2.13 HEATING OF REACTION MIXTURES

Heating of aqueous solutions is most conveniently carried out using a Bunsen
burner with the glass vessel suitably supported on a tripod and ceramic-centred
gauze; it is essential to use a heat resistant bench mat, and under no circum-
stances should such apparatus be left unattended. It is also imperative that no
other worker using flammable solvents is in the vicinity.

In the case of solutions of flammable liquids having a boiling point below
100 °C, the stainless steel electrically-heated water bath or steam bath provided
with a constant-level device must be used. The individual circular type is pro-
vided with a series of concentric rings in order to accommodate flasks and
beakers of various sizes. A rectangular type, suitable for use in student classes,
has several holes each fitted with a series of concentric rings. In both cases the
water bath is fitted with an immersion heating element controlled by a suitable
regulator.

For temperatures above 100 °C, oil baths are generally used.

For temps above 100 C oil baths are used. Medicinal paraf-
fin may be employed for temperatures up to about 220 °C. Glycerol and dibutyl
phthalate are satisfactory up to 140-150 °C; above these temperatures fuming is
usually excessive and the odour of the vapours is unpleasant.

For temperatures
up to about 250 °C, 'hard hydrogenated' cottonseed oil, m.p. 40-60 °C, is recom-
mended: it is clear, not sticky and solidifies on cooling; its advantages are there-
fore obvious. Slight discoloration of the 'hard' oil at high temperature does not
affect its value for use as a bath liquid. The Silicone fluids, e.g. Dow Corning 550,
are probably the best liquids for oil baths but are somewhat expensive for
general use. This Silicone fluid may be heated to 250 °C without appreciable loss
or discoloration. Oil baths should be set up in the fume cupboard wherever pos-
sible. A thermometer should always be placed in the bath to avoid excesive heat-
ing. Flasks, when removed from an oil bath, should be allowed to drain for
several minutes and then wiped with a rag. Oil baths may be heated by a gas
burner but the use of an electric immersion heater is safer and is to be preferred.

A satisfactory bath suitable for temperatures up to about 250 °C may be pre-
pared by mixing four parts by weight of 85 per cent ortho-phosphoric acid and
one part by weight of meta-phosphoric acid; the mixed components should first
be heated slowly to 260 °C and held at this temperature until evolution of steam
and vapours has ceased. This bath is liquid at room temperatures. For tempera-
tures up to 340 °C, a mixture of two parts of 85 per cent ortho-phosphoric acid
and one part of meta-phosphoric acid may be used: this is solid (or very viscous)
at about 20 °C.

High temperatures may be obtained also with the aid of baths of fusible metal
alloys, e.g. Woods metal - 4 parts of Bi, 2 parts of Pb, 1 part of Sn and 1 part of
Cu - melts at 71 °C; Rose's metal - 2 of Bi, 1 of Pb and 1 of Sn - has a melting
point of 94 °C; a eutectic mixture of lead and tin, composed of 37 parts of Pb and
63 parts of Sn, melts at 183 °C. Metal baths should not be used at temperatures
much in excess of 350 °C owing to the rapid oxidation of the alloy. They have the
advantage that they do not smoke or catch fire; they are, however, solid at ordin-
ary temperature and are usually too expensive for general use. It must be
remembered that flasks or thermometers immersed in the molten metal must be
removed before the metal is allowed to solidify.

One of the disadvantages of oil and metal baths is that the reaction mixture cannot be observed easily; also for really constant temperatures, frequent adjust-
ment of the source of heat is necessary. These difficulties are overcome when
comparatively small quantities of reactants are involved, in the apparatus
shown in Fig. 2.45 (not drawn to scale).
A liquid of the desired boiling point is placed in the flask A which is heated
with an electric mantle (see below). The liquid in A is boiled gently so that its
vapour jackets the reaction tube BC; it is condensed by the reflux condenser at
D and returns to the flask through the siphon E. Regular ebullition in the flask is
ensured by the bubbler F. The reaction mixture in C may be stirred mechanic-
ally. It is convenient to have a number of flasks, each charged with a different
liquid; changing the temperature inside C is then a simple operation. A useful
assembly consists of a 50 ml flask A with a 19/26 joint, a vapour jacket about
15 cm long, a 34/35 joint at B and a 19/26 or 24/29 joint at D.


The following liquids may be used (boiling points are given in parentheses):
pentane (35 °C);
acetone (56 °C);
methanol (65 °C);
carbon tetrachloride (77 °C);
trichloroethylene (86 °C);
toluene (110 °C);
chlorobenzene (132-133 °C);
brombenzene (155 °C);
p-cymene (176 °C);
o-dichlorobenzene (180 °C);
methyl ben-
zoate (200 °C);
tetralin (207 °C);
ethyl benzoate (212 °C);
1,2,4-trichlorobenzene
(213 °C);
isopropyl benzoate (218 °C);
methyl salicylate (223 °C);
propyl ben-
zoate (231 °C);
diethyleneglycol (244 °C);
butyl benzoate (250 °C);
diphenyl
ether (259 °C);
dimethyl phthalate (282 °C);
diethyl phthalate (296 °C);
benzo-
phenone (305 °C);
benzyl benzoate (316 °C).

An air bath is a very cheap and convenient method of effecting even heating
of small distillation flasks (say, 25 ml or 50 ml), where the use of a micro Bunsen
burner, results in fluctuations in the level of heating due to air draughts. It may
be readily constructed from two commercial tin cans (not aluminium) (those from tinned fruit or food are quite suitable), of such sizes that one fits into the other to provide a small concentric gap as an air insulator. The cleaned large can
is cut to the same height as the small can, and the base is then removed. The cleaned smaller can has a number of holes punched in the base. The edges of
both cans must be smoothed and any ragged pieces of metal removed. A circular
piece of ceramic paper (1 mm thickness) of the same diameter of the smaller can
is inserted over the holes. A piece of reinforced calcium silicate matrix (6 mm
thickness) of diameter slightly greater than the larger can is then obtained and a
hole of suitable diameter made in its centre; the sheet is than cut diametrically.
The two halves which constitute the cover of the air bath, will have the shape
shown in Fig. 2.46{b). The diameter of the hole in the lid should be approxim-
ately equal to the diameter of the neck of the largest flask that the air bath will
accommodate. The air bath, supported on a tripod and wire gauze, is heated by
means of a Bunsen burner; the position of the flask, which should be clamped, is
shown in Fig. 2.46(a). The flask should not, as a rule, rest on the bottom of the
bath. The advantages of the above air bath are: (a) simplicity and cheapness of
construction; (b) ease of temperature control; (c) rapidity of cooling of contents
of the flask either by removing the covers or by completely removing the air
bath; and (d) the contents of the flask may be inspected by removing the covers.


Heating mantles provide one of the most convenient means of controlled
heating of reaction vessels. They consist of a heating element enclosed within a
knitted glass-fibre fabric which is usually protected with a safety earth screen
(Fig. 2.47(a), Electrothermal Engineering). The heating unit is enclosed within
an outer rigid housing (often of polypropylene or aluminium) which is appro-
priately insulated so that the mantle may be handled at a low outer case temper-
ature. Heating control is by in-built or external energy regulators. Fixed sizes for
round-bottomed flasks having capacities from 50 ml to 5 litres are standard (e.g.
Fig. 2.47(fr), Isopad). In addition a multipurpose unit is now available which will
accept a variety of different sized flasks of round-bottomed or pear-shaped
design (Fig. 2.47(c), Electrothermal Engineering); this unit has a bottom outlet
to accept 60° angle funnels to be heated in hot nitrations, in which case only the
lower section of the heating element need be activated. Further designs of
mantle (Electrothermal Engineering) are the fully enclosed flexible heating
mantle with elastic neck entry which is often convenient when the apparatus as-
sembly does not allow the satisfactory support of the encased type, and the heat-
ing mantle with in-built stirrer (Fig. 2.47(d)). Other manufacturers are Glas-Col
and Thermolyne Corp, and the units are available through Aldrich Chemical
Co. Ltd.

Electric hot plates may also be employed in the case of flat-bottomed vessels,
and are provided with suitable energy regulators. Various sizes are available for
individual use or for groups of students. The heating surface may be either cast-
iron aluminium-sprayed, or a glass-ceramic surface. In the former case it is often
advisable to interpose a sheet of ceramic paper between the metal top and the
vessel to be heated, particularly if the contents of the latter are liable to 'bump'.
Electic hot plates should not be used with low boiling, flammable liquids {e.g. ether,
light petroleum, etc.) contained in open beakers since ignition can frequently occur
when the heavier vapour spills on to the heated surface.
 
Top